Searches and limit analyses with the Fourier transform

0.15 -

Alex (+LBL?), Donatella, Franco, Giuseppe, Sandro, Stefano

Outline

- Quick introduction to the method
- Example
- Task list
- Status:
 - "Fitter"
 - Samples
 - Other pieces (PID, SSKT, Semileptonic sample) in other talks (Paola, Pierlu, Sandro)

The Method

- We are looking for a periodic signal: Fourier space is the natural tool
 - Even Moser and Roussarie mention this!
 - They use it to derive the most useful properties of A-scan
 - Amplitude approach is approximately equivalent to the Fourier transform
 - Amplitude from scan ↔ Re[Fourier]
- Why not go for the real thing?
 - Computationally lighter
 - As powerful as A-scan
 - As is, no need *in principle* for measurements of D, ε etc. (however these ingredients add information and tighten the limit)

Definitions and properties

- Discrete Fourier transform definition
- Given N measurements $\{t_j\} \rightarrow g(\mathbf{w}) = \sum_{k=1}^{N} D_k e^{-i\mathbf{w}t_k}$ • Properties:
 - Average:
 - If f(t) is parent distribution of $\{t_j\}$ $\langle g(\mathbf{w})\rangle = N\langle D\rangle f(\mathbf{w})$
 - Normalization:
 - Errors:

• Real part:
$$\mathbf{s}^{2}(\operatorname{Re} g(\mathbf{w})) = N\left(\langle D^{2} \rangle - \frac{1}{N} \langle \operatorname{Re} \widetilde{f}(\mathbf{w}) \rangle^{2} + \frac{\langle D^{2} \rangle}{\langle D \rangle^{2}} \langle \operatorname{Re} \widetilde{f}(2\mathbf{w}) \rangle\right)$$

NB: Errors can be calculated directly from the data!

.
$$\Delta(\mathbf{w}) \equiv g_{\text{Un}Mix}(\mathbf{w}) - g_{Mix}(\mathbf{w})$$
 behaves "as you'd expect"

• While Δ and its uncertainty are fully data-driven, predicted Δ requires exactly the same ingredients as the amplitude scan fit

Properties of Δ ...

- Re[Δ]
 - a) contains all the information of the standard amplitude scan
 - b) Amplitude scan properties are only approximate and mostly derived assuming (Amplitude scan)≈Re[Δ]
- Re[F] and σ_{Re[F]} can be computed directly from data!
- b) ⇒ Sensitivity is exactly:

$$\frac{\Delta(\mathbf{w} = \Delta m_s)}{\mathbf{s}_{\Delta}} = \sqrt{N\mathbf{e}\langle D \rangle^2} \sqrt{\frac{S}{S+B}} e^{-\Delta m^2 \mathbf{s}_{ct}^2/2} \sqrt{1 + \frac{\mathbf{s}_D^2}{\langle D^2 \rangle}}$$

Can we reproduce the A-scan itself?

Toy Example

"A-scan" a` la fourier

$$\frac{\Delta(\mathbf{w})}{pred.\Delta(\mathbf{w}; \Delta m_s = \mathbf{w})}$$

- •1000 toy events
- $\Delta m_s = 18$
- •S/B=2.
- • $\epsilon D_{signal}^2 = 1.6\%$
- $\bullet \epsilon D_{back}^2 = 0.4\%$
- •Background and signal parameterized according to standard analyses
- •Histogrammed σ_{ct}
- •Best knowledge on SF parameterization

No actual fit involved: this method allows to flexibly study systematics!

Plans for our method

- Final proof of principle:
 - Process data from last round of analyses and show consistent picture with standard A-scan
- Prove viability of our method:
 - Full semileptonic and hadronic samples
 - Same taggers and datasets as latest blessed Ascans
 - Compare results to our method
 - Will be ready on time for winter conferences
- Extend:
 - 1fb⁻¹
 - All possible modes
 - State of the art taggers
 - We will have a full analysis by Summer conferences

Tasks

(my view, still being finalized not yet endorsed/discussed)

- Data [Donatella, MDS, Stefano]
 - Skimming [Donatella, Marjorie]
 - MC
 - Ntuples [Johannes, Giuseppe]
- 2) Reco: [Alex, MDS, Stefano]
 - Optimize selections [Alex, MDS]
 - New channels (new modes, partially reconstructed) [Alex, MDS]
- 3) Basic tools: [Stefano, Alex, MDS, Giuseppe, Johannes]
 - PID [Stefano]
 - Vertexing (understand resolutions etc.) [Alex, MDS]
 - new taggers? (OSKT, SSKT...) [Giuseppe, Johannes]
- 4) Fourier "fitter" [Alex, Franco]
 - Toy MC [Alex]
 - Tool for data Analysis (from ct, sigma, D, etc. to "the plot") [Alex]
- 5) Semileptonic Analysis [Alex, Sandro]
 - Spring Analysis: reproduce the MIT result
 - Summer Anal.: full 1 fb⁻¹ indipendent analysis
- 6) Hadronic Analysis (same as 5)
 - [Alex, Amanda, Giuseppe, Hung-Chung, Stefano]
- 7) Combine Analyses [Alex]

Fitter Status

- "Fitter" fully implemented
- •Provided in the same consistent framework:
 - Data processing
 - Toy MC generation
 - Bootstrap extraction
- •Combination of several samples Pulls Mean vs ω

Pulls σ vs ω

Dataset Skimming

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			Files size [evts]				Old Sample			New Sample			MIT Yields	
Φπ <		$X \rightarrow$	π	π_{WS}	3π		π	$\mid \pi_{WS} \mid$	3π	π	π_{WS}	3π	π	3π
K _S K		φπ											551±42	158±17
K _S K	$ B_s \rightarrow D_s X $	φ3π												
K _S K		K*K	71	62	637		-			4	(P)	4	238±42	63±11
πππ 134 94 -		K _s K	-	-	-		_							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \times $	πππ	134	94			(1)			4	4		108±24	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	B°→□		210 evts 25 MB				()							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Κππ	370	316	2038	}_				4	(P)	4	8424±81	4611±129
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		Κπ	18	-	100					(-)		(C)	1377±35	1089±43
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ D_{0} $	KK	-	-	-									
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \stackrel{\star}{\bigcirc} $	ππ	-	-	-									
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		КЗπ	-	-	-								1013±26	820±35
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Κπ	92	-	-					4)			9601±84	1557±45
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		KK	90	-	-					4				
		$ \pi\pi $	42	-	-		\$			4				
		КЗπ	-	-	-									

Main samples including new data are going to be there in ~week

Conclusions

- This is an AGGRESSI VE PLAN
- We started moving at a good pace
- We need to keep going, faster?
- We want to have
 - Preliminary results by spring (me hopes ~march)
 - independent results by the summer!
- A joint effort is the only way of getting this through!